SUBGROUP IDEALS IN GROUPRINGS I

Meera KHAMBADKONE
Department of Mathematics, University of Jos, Jos, Nigeria

Communicated by H. Bass
Received 22 October 1982

1. Introduciion

Let G be a group, $Z G$ its integral groupring and A_{G} the augmentation ideal of ZG. Denote by $Q_{n}(G)=A_{G}^{n} / A_{G}^{n+1}$ and by G_{i} the i th term of the lower central series of G. Several authors have studied the structure of $Q_{n}(G)$ ([2], [4], [51). It is well known that $Q_{1}(G) \simeq G_{1} / G_{2}$. Losey [2] proved that $Q_{2}(G) \simeq\left(G_{2} / G_{3}\right) \oplus \operatorname{Sp}^{2}\left(G_{1} / G_{2}\right)$ for any finitely generated group; where Sp^{2} denotes the second symmetric product of G_{1} / G_{2}. Tahara has found the structure of $Q_{3}(G)$ for finite groups [4].

We are interested in the abelian group structure of the quotients $A_{G}^{m} A_{H} / A_{G}^{m+1} A_{H}$ where m is a positive integer. The case where $m=1$ is discussed in the author's earlier paper [1]. Here the author attempts to find: the structure of $A_{G}^{2} A_{H} / A_{G}^{3} A_{H}$ where G is a finite split extension of a normal subgroup H by a subgroup K.

2. Notation and preliminaries

We will restrict ourselves to the notation of Losey and Tahara.
Let M be an abelian group and F be a free abelian group generated by the symbols $u\left(m_{1}, m_{2}, \ldots, m_{n}\right) ; m_{i} \in M, i=1,2, \ldots, n$. Let R be the subgroup or F generated by all elements of the type,
(a)

$$
\begin{aligned}
& u\left(m_{1}, m_{2}, \ldots, m_{i-1}, m_{i} m_{i+1}, \ldots, m_{n}\right) \\
& -u\left(m_{1}, m_{2}, \ldots, m_{i-1}, m_{i}, m_{i+2}, \ldots, m_{n}\right) \\
& -u\left(m_{1}, m_{2}, \ldots, m_{i-1}, m_{i+1}, m_{1+2}, \ldots, m_{n}\right), \quad i=1,2, \ldots, n
\end{aligned}
$$

and
(b) $u\left(m_{1}, m_{2}, \ldots, m_{n}\right)-u\left(m_{\pi(1)}, m_{\pi(2)}, \ldots, m_{\pi(n)}\right)$.
where π is the permutation of the integers $1,2, \ldots, n$. Then the nth symmetric product $\mathrm{Sp}_{\mathrm{I}}^{\prime \prime}(M)$ of M is defined to be the quotient group F / R. If we write $m_{1} \vee m_{2} \vee \cdots \vee m_{n}$ for the coset of $u\left(m_{1}, m_{2}, \ldots, m_{n}\right)$, then a general element of $S \mathrm{p}^{n}(M)$ is a finite sum of the form $\Sigma_{r \in L} r m_{1} \vee m_{2} \vee \cdots \vee m_{n}$. Let G be a finite group
such that $G=H \backslash K, H \triangleleft G$. Let

$$
\begin{aligned}
. *: H=H_{(1)} \supseteq H_{(2)}=[H, G] \supseteq H_{(3)}=[H, G, G] \supseteq \cdots \supseteq H_{(m)} & =[H, G, G, \ldots, G] \\
\supseteq H_{(m+1)} & =1
\end{aligned}
$$

be an N-series of H; a series of subgroups $H_{(i)}$ such that $\left[H_{(i)}, H_{(j)}\right] \subseteq H_{(i+j)}$ for all i, j. . $*$ induces a weight function w on H. For $x \in H, w(x)=k$ if $x \in H_{(k)} \backslash H_{(k+1)}$. $w(1)=\infty$. Det :e a family $\left\{\Lambda_{m}\right\}_{m=1}^{\infty}$ of Z-submodules of $Z H$ as follows. Λ_{k} is spanned over I by ail products $\left(h_{1}-1\right)\left(h_{2}-1\right) \cdots\left(h_{s}-1\right)$ with $\sum_{i=1}^{s} w\left(h_{i}\right) \geq k$. Then $\Lambda_{0}=Z H, \Lambda_{1}=A_{H}$ and $\left[\Lambda_{(i)}, \Lambda_{(j)}\right] \subseteq \Lambda_{(i+j)}$ for all $i, j \geq 0 . \Lambda_{i} \supseteq A_{H}^{i}$ for all i. The filtration $\left\{\Lambda_{k}\right\}_{k=0}^{\infty}$ is called the canonical filtration of A_{H} with respect to $\%$. For $x \neq 1$, define $o^{*}(x)$ to be the order of the coset $x H_{(w(x)+1)}$. Since each of the quotient groups $H_{(m)} / H_{(m+1)}$ is finite abelian there exist elements $x_{i 1}, x_{i 2}, \ldots, x_{i \mu(i)}$ in $H_{(i)}{ }^{\prime} H_{(i+1)}$ such that any element $\bar{x} \in H_{(i)} / H_{(i+1)}$ can be written uniquely in the form

$$
\bar{x}=b_{1} \bar{x}_{i 1}+b_{2} \bar{x}_{i 2}+\cdots+b_{u(i)} \bar{x}_{i \mu(i)} .
$$

where $0 \leq b_{j} \leq o^{*}\left(x_{i j}\right)$ for all $j, 1 \leq i \leq m$. Choose $x_{i j}$ such that $o^{*}\left(x_{i j}\right)$ divides $o^{*}\left(x_{i j+1}\right)$. Set $S_{0}=\left\{x_{i j} \mid i=1,2, \ldots, m ; j=1,2, \ldots, \mu(i)\right\}$. Order S_{0} by putting $x_{i j}<x_{k l}$ if $i<k$ or $i=k$ and $j<l$. Enlarge S_{0} to S by putting $x_{i j}{ }^{1}$ immediately after $x_{i j}$ if $o^{*}\left(x_{i j}\right)=\infty$. Let $|S|=n$. Re-index the set S by the integers $1,2, \ldots, n$ so that $x_{i}<x_{j}$ if $i<j$. Then every element $h \in H$ can be written uniquely in the form

$$
\begin{equation*}
h=x_{1}^{e^{(1)}} \cdot x_{2}^{e^{(2)}} \cdots x_{m}^{e(m)} \tag{1}
\end{equation*}
$$

whre (1) $0 \leq e(i) \leq o^{*}\left(x_{i}\right)$ for all i, and
(2) if $x_{i+1}=x_{i}^{\prime}$, then $e(i) e(i+1)=0$.

The set S is then called the positive uniqueness basis of H.
With the above notations, an m-sequence $\alpha=(e(1), e(2), \ldots, e(m))$ is a:a ordered m tuple of non-negative integers. The set S_{m} of all m-sequences is ordered lexicographically so that it is well-ordered. An m-sequence $\alpha=(e(1), e(2), \ldots, e(m))$ is basic if
(1) $0 \leq e(i) \leq d(i)$ for all $i, d(i)=o^{*}\left(x_{i}\right)$, and
(2) if $x_{i+1}=x_{i}^{1}$, then $e(i) e(i+1)=0$.

There is a one-to-one correspondence between the elements of H and the basic m-sequences. Define the weight $W(\alpha)$ of an m-sequence $\alpha=(e(1), e(2), \ldots, e(m)$) to be $W(\alpha)=V_{i}^{\prime \prime} w\left(x_{i}\right) e(i)$. Define the proper product $P(\alpha) \in Z H$ to be $P(x)=I_{i, 1}^{m}\left(x_{i}-1\right)^{(i)}$ where the factors occur in order of increasing i from left to right. If α is basic, then $P(\alpha)$ is called a basic product.

3. Main results

Losey and Tahara found the Z-basis of $A_{1}, A_{2}, 1_{3}$ and I_{4} respectively. They are given by the following lemmas.

Lemma 1 ([2]). The basic products form a free Z-basis of ZH. The basic products other than one form a jree Z-basis of Λ_{i}.

Lemma 2 ([2]). Λ_{2} has a free Z-basis consisting of

$$
\begin{equation*}
\left(x_{1 i}-1\right)^{d(i)}, \quad d(i)=o^{*}\left(x_{1 i}\right), \tag{1}
\end{equation*}
$$

(2) $\quad P(\alpha), \quad \alpha$ basic, $\quad W(\alpha) \geq 2$.

Lemma 3. Λ_{3} has a free Z-basis consisting of

$$
\begin{equation*}
\left(x_{1 i}-1\right)^{d(i)}, \quad d(i)=o^{*}\left(x_{1 i}\right) \geq 3 \tag{1}
\end{equation*}
$$

(2) $\quad\left(x_{2},-1\right)^{d(i)}, d^{\prime}(i)=o^{*}\left(x_{2 i}\right)$,

$$
\begin{equation*}
d(i)\left(x_{1}-1\right)\left(x_{1}-1\right), \quad d(i)=o^{*}\left(x_{1 i}\right), \quad 1 \leq i \leq j \leq \mu(1) \tag{3}
\end{equation*}
$$

$P(\alpha), \quad \alpha$ basic, $\quad W(\alpha) \geq 3$.
Lemma 4 ([4]). A_{4} has a system of Z-generators consistivec of

$$
\begin{align*}
& \left(x_{1},-1\right)^{(i+1}, \quad d(i)=o^{*}\left(x_{1 i}\right) \geq 4 \text {, } \tag{1}\\
& \left(x_{21}-1\right)^{d^{\prime}(i)}, \quad d^{\prime}(i)=o^{*}\left(x_{21}\right), \tag{2}\\
& \left(x_{3}-1\right)^{d^{\prime \prime}(1)}, \quad d^{\prime \prime}(i)=o^{*}\left(x_{3 i}\right) \text {, } \\
& \left(x_{1 i}-1\right)^{d i}\left(x_{1 i}-1\right), \quad d(i)=o^{*}\left(x_{1 i}\right) \geq 3, \quad 1 \leq i \leq j \leq \mu(1), \tag{4}\\
& \left(x_{1}-1\right)\left(x_{1 j}-1\right)^{d \mu}, \quad d(j)=o^{*}\left(x_{1 j}\right) \geq 3, \quad 1 \leq i \leq j \leq \mu(1), \tag{5}\\
& \left(d(i), d^{\prime}(j)\right)\left(x_{11}-1\right)\left(x_{2 j}-1\right), \quad d(i)=o^{*}\left(x_{1 i}\right), \quad d^{\prime}(j)=o^{*}\left(x_{2 j}\right), \tag{6}\\
& d(i)\left(x_{1 i}-1\right)\left(x_{1 j}-1\right)\left(x_{1 k}-1\right), \quad d(i)=o^{*}\left(x_{1 i}\right), \quad 1 \leq i \leq j \leq k \leq \mu(1), \tag{7}\\
& P(\alpha), \quad \alpha \text { basic, } \quad W(\alpha) \geq 4 . \tag{8}
\end{align*}
$$

(3)

Denote by $W_{2}(K)=\left(K_{2} / K_{3}\right) \oplus \operatorname{Sp}^{2}\left(K_{1} / K_{2}\right)$ and $y_{2}(H)=\left(H_{(2)} / H_{(3)}\right) \oplus \operatorname{Sp}^{2}\left(H_{(1)} / H_{(2)}\right)$. We now prove the following lemma.

Lemma 5. Let G be a finite group and H a normal subgroup of G wheh that $\boldsymbol{G}=\boldsymbol{H} \mid \boldsymbol{K}$. Then

$$
\begin{aligned}
& A_{6}^{2}, A_{H}^{\prime} A_{l,}^{3} A_{H} \\
& \quad=\left(A_{H}^{3}+A_{[H, K]} A_{H}\right) /\left(A_{H}^{4}+A_{H} A_{[H, K]} A_{H}+A_{[H, K, H]} A_{H}+A_{[H, K, K]} A_{H}\right) \\
& \oplus\left(A_{K} A_{H}^{2}+A_{K}^{2} A_{H}\right) /\left(A_{K} A_{H}^{3}+A_{K}^{2} A_{H}^{2}+A_{K}^{3} A_{H}+A_{K} A_{[H, K]} A_{H}\right)
\end{aligned}
$$

Proof. A_{6}; is freely generated as an abelian group by the set $\{g-1 \mid g \in G\}$.

$$
\begin{aligned}
A_{G} & =\langle g-1 \mid g \in G\rangle, \\
g \quad 1 & =h k-1 ; \quad h \in H, \quad k \in K, \\
& =(h-1)(k-1)+(h-1)+(k-1) .
\end{aligned}
$$

So

$$
A_{G}=A_{H}+A_{\kappa}+A_{H} A_{\kappa}
$$

By (1) this sl: is a direct sum.

$$
\begin{align*}
A_{G} A_{H}= & A_{H}^{2}+A_{K} A_{H}+A_{H} A_{K} A_{H} \\
A_{\bar{G}}^{2} A_{H}= & \left(A_{H}+A_{\kappa}+A_{H} A_{K}\right)\left(A_{H}^{2}+A_{K} A_{H}+A_{H} A_{K} A_{H}\right) \\
= & A_{H}^{3}+A_{K} A_{H}^{2}+A_{H} A_{K} A_{H}^{2}+A_{H} A_{\Lambda} A_{H}+A_{K}^{2} A_{H} \\
& +A_{H} A_{\Lambda}^{2} A_{H}+A_{H}^{2} A_{\kappa} A_{H}+A_{K} A_{H} A_{K} A_{H}+A_{H} A_{\Lambda} A_{H} A_{K} A_{H} \\
= & A_{H}^{3}+A_{K} A_{H}^{2}+A_{H} A_{K} A_{H}+A_{K}^{2} A_{H}+A_{K} A_{H} A_{K} A_{H} \\
& +A_{H} A_{K} A_{H} A_{K} A_{H} \tag{1}
\end{align*}
$$

Since

$$
A_{H} A_{\kappa} \subseteq A_{\Lambda} A_{H}+A_{H}, \quad A_{H} A_{\kappa} A_{H} \subseteq A_{\kappa} \cdot A_{H}^{\vdots}+A_{H}^{\vdots}
$$

and

$$
A_{K} A_{H} A_{K} A_{H i} \subseteq A_{k}\left(A_{K} A_{H}^{2}+A_{H}^{2}\right) \subseteq A_{\kappa} A_{i}^{\prime}
$$

we have

$$
A_{H} A_{k} A_{H} A_{k} \cdot A_{H} \subseteq A_{H}\left(A_{k} \cdot A_{H}^{2}\right) \subseteq A_{H} A_{k} \cdot A_{H}
$$

From (1)

$$
\begin{align*}
& A_{G}^{2} A_{H}=A_{H}^{3}+A_{K} A_{H}^{2}+A_{\bar{K}}^{2} A_{H}+A_{H} A_{\Lambda} A_{H}, \tag{2}\\
& A_{G}^{3} A_{H}=\left(A_{H}+A_{\Lambda}+A_{H} A_{\Lambda}\right)\left(A_{H}^{3}+A_{\Lambda} A_{H}^{2}+A_{\Lambda}^{2} A_{H}+A_{H} A_{\Lambda} A_{H}\right) \\
& =A_{H}^{4}+A_{\Lambda} A_{H}^{3}+A_{\Lambda}^{2} A_{H}^{2}+A_{K}^{3} A_{H}+A_{H} A_{\Lambda} \cdot A_{H}^{2}+A_{H} A_{\Lambda}^{2} A_{H} \\
& +A_{H}^{\prime} A_{K} \cdot A_{H}+A_{K} \cdot A_{H} A_{K} A_{H}+A_{H} A_{K} A_{H} A_{K} A_{H}, \tag{3}\\
& A_{H} A_{\kappa} A_{\| \prime}^{3} \subseteq A_{H} A_{\kappa} A_{H}^{2}, \quad A_{H} A_{\kappa}^{2} A_{H}^{2} \subseteq A_{H} A_{\kappa}^{2} A_{H}
\end{align*}
$$

and

$$
A_{H} A_{K}^{3} A_{H} \subseteq A_{H} A_{K}^{2} A_{H}
$$

Consider the identity

$$
\begin{aligned}
(y-1)(x-1)= & (x-1)(y-1)+([y, x]-1)+(x-1)([y, x]-1) \\
& +(y-1)([y, x]-1)+(x-1)(y-1)([y, x]-1)
\end{aligned}
$$

So for $h \in H, k \in K$,

$$
\begin{aligned}
(h-1)(k-1)= & (k-1)(h-1)+([h, k]-1)+(k-1)([h, k]-1) \\
& +(h-1)([h, k]-1)+(k-1)(h-1)([h, k]-1)
\end{aligned}
$$

$$
\begin{aligned}
(k-1)([h, k]-1) & =(k-1)\left(h^{-1} h^{k}-1\right) \\
& =(k-1)\left[\left(h^{-1}-1\right)\left(h^{k}-1\right)+\left(h^{-1}-1\right)+\left(h^{k}-1\right)\right] \\
& \subseteq A_{K} A_{H}^{2}+A_{K} A_{H} \subseteq A_{K} A_{H} .
\end{aligned}
$$

Also,

$$
\begin{aligned}
(k & -1)(h-1)([h, k]-1) \\
& =(k-1)(h-1)\left(h^{-1} h^{k}-1\right) \\
& =(k-1)(h-1)\left[\left(h^{-1}-1\right)\left(h^{k}-1\right)+\left(h^{-1}-1\right)+\left(h^{k}-1\right)\right] \\
& \subseteq A_{K} A_{H}^{3}+A_{K} A_{H}^{2} \subseteq A_{K} A_{H} .
\end{aligned}
$$

Hence

$$
A_{H} A_{K} \subseteq A_{K} A_{H}+A_{[H, K]}+A_{H} A_{[H, K]}
$$

So

$$
\begin{gather*}
A_{H} A_{K} A_{H} \subseteq\left(A_{K} A_{H}+A_{[H, K]}+A_{H} A_{[H, K]}\right) A_{H} \\
\subseteq A_{K} A_{H}^{3}+A_{[H, K]} A_{H}+A_{H}^{3} . \tag{5}
\end{gather*}
$$

Thus

$$
\begin{gathered}
A_{H} A_{\kappa} A_{H}^{2} \subseteq\left(A_{K} A_{H}^{2}+A_{[H, K]} A_{H}+A_{H}^{3}\right) A_{H} \\
\subseteq A_{K} A_{H}^{2}+A_{[H, K]} A_{H}^{2}+A_{H}^{+}
\end{gathered}
$$

Let $x \in A_{[H, K]} A_{H}^{2}$ be such that $x=(a-1)\left(h_{1}-1\right)\left(h_{2}-1\right), a \in[H, K] ; h_{1}, h_{2} \in H$. Then

$$
\begin{aligned}
& x \in\left(A_{H} A_{[H, K]}+A_{[H, K, H]}+A_{[H, K]} A_{[H, K, H]}\right) \cdot A_{H} \\
& \quad \in A_{H} A_{[H, K]} A_{H}+A_{[H, K, H]} A_{H} .
\end{aligned}
$$

Hence

$$
\begin{gather*}
A_{H} A_{K} A_{H}^{2} \subseteq A_{K} A_{H}^{3}+A_{H} A_{[H, K]} A_{H}+A_{[H, K, H]} A_{H}+A_{H}^{4} \tag{7}\\
A_{H}^{2} A_{K} A_{H} \subseteq A_{H}\left(A_{\kappa} \cdot A_{H}^{2}+A_{[H, K]} A_{H}+A_{H}^{3}\right) \\
\subseteq A_{H} A_{K} A_{H}^{2}+A_{H} A_{[H, K]} A_{H}+A_{H}^{4} \\
\subseteq A_{\kappa} A_{H}^{3}+A_{H} A_{[H, K]} A_{H}+A_{[H, K, H]} A_{H}+A_{H}^{4} \tag{8}\\
A_{K} A_{H} A_{\kappa} A_{H} \subseteq A_{\kappa}\left(A_{K} A_{H}^{2}+A_{[H, K]} A_{H}+A_{H}^{3}\right) \\
\subseteq A_{K}^{2} A_{H}^{2}+A_{K} A_{[H, K]} A_{H}+A_{K} A_{H}^{3} \tag{9}\\
A_{H} A_{K} A_{H} A_{K} A_{H} \subseteq A_{H}\left(A_{K}^{2} A_{H}^{2}+A_{K} A_{[H, K]} A_{H}+A_{K} A_{H}^{3}\right) \\
 \tag{10}\\
\subseteq A_{H} A_{K}^{2} A_{H}+A_{H} A_{K} A_{H}^{2} \\
A_{H} A_{K}^{2} A_{H}=A_{H} A_{K} A_{K} A_{H} \\
\left.\subseteq\left(A_{K} A_{H}+A_{[H, K]}+A_{H} A_{[H, K]}\right)\right) A_{K} A_{H} \\
\subseteq A_{K} A_{H} A_{\kappa} A_{H}+A_{[H, K]} A_{K} A_{H}+A_{H} A_{[H, K]} A_{K} A_{H}
\end{gather*}
$$

Hence

$$
\begin{align*}
A_{H} A_{K} A_{H} A_{K} A_{H} \subseteq & A_{K}^{2} A_{H}^{2}+A_{K} A_{H}^{3}+A_{[H, K, K]} A_{H}+A_{H} A_{K} A_{H}^{2}+A_{H}^{2} A_{K} A_{H} \\
\subseteq & A_{K}^{2} A_{H}^{2}+A_{K} A_{H}^{3}+A_{[H, K, K]} A_{H} \\
& +A_{[H, K, H]} A_{H}+A_{H} A_{[H, K]} A_{H}+A_{H}^{4} \tag{11}
\end{align*}
$$

From (3) usinz (7), (8), (9)

$$
\begin{aligned}
A_{G}^{3}, A_{H}= & A_{H}^{4}+A_{K} A_{H}^{3}+A_{\kappa}^{2} A_{H}^{2}+A_{K}^{3} A_{H}+A_{H} A_{[H, K]} A_{H} \\
& +A_{[H, K, K]} A_{H}+A_{[H, K, H]} A_{H}+A_{K} A_{[H, K]} A_{H}
\end{aligned}
$$

From (2) using (5),

$$
A_{G}^{2} A_{H}=A_{H}^{3}+A_{k} A_{i j}^{2}+A_{k}^{2} A_{H}+A_{H} A_{k} A_{H} .
$$

But $A_{H} A_{K} A_{H} \subseteq A_{G}^{2} A_{H}$, therefore we have equality in the last line. Thus

$$
A_{G}^{2} A_{H}=\left(A_{H}^{3}+A_{[H, K]} A_{H}\right) \oplus\left(A_{K} A_{H}^{2}+A_{K}^{2} A_{H}\right)
$$

and

$$
\begin{aligned}
A_{G,}^{3} A_{H}= & \left(A_{H}^{4}+A_{H} A_{[H, K]} A_{H}+A_{[H, K, H \mid} A_{H}+A_{[H, K, K]} A_{H}\right) \\
& \oplus\left(A_{K} A_{H}^{3}+A_{K}^{2} A_{H}^{2}+A_{K}^{3} A_{H}+A_{K} A_{[H, K ;} A_{!!}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& A_{i}^{2} A_{H} / A_{G}^{3} A_{H} \\
&=\left(A_{H}^{3}+A_{[H, K \mid} A_{H}\right) /\left(A_{H}^{+}+A_{H} A_{[H, K,} A_{H}+A_{[H, K, H \mid} \cdot A_{H}+A_{[H, K, K]} A_{H}\right) \\
& \oplus\left(A_{K} A_{H}^{2}+A_{K}^{2} A_{H}\right) /\left(A_{K} A_{H}^{3}+A_{K}^{2} \cdot A_{H}^{2}+A_{K}^{3} A_{H}+A_{K} A_{i(H, K]} A_{H}\right)
\end{aligned}
$$

This completes the proof of the lemma.
We determine the structure of the two direct summands on the right hand side separately. The following lemma gives the structure of the first term completely.

Iemma 6. There exists a homomorphism

$$
\psi^{*}: A_{3}^{*} / A_{4}^{*} \rightarrow W_{3}^{*} / R_{3}^{*}
$$

whose kernel is

$$
\left(A_{[H, K, K]}+A_{[H, K, H]}+A_{H_{3}}+A_{[H, K]}^{2}\right) \cap A_{3}^{*}+A_{+}^{*}
$$

where $A_{3}^{*}=A_{H}^{3}+A_{[H, N]} A_{H}$ and

$$
\begin{aligned}
& A_{4}^{*}=A_{H}^{4}+A_{H} A_{[H, K]} A_{H}+A_{[H, K, H]} A_{H}+A_{[H, K, K]} A_{H} \\
& W_{3}^{*}=\operatorname{Sp}^{3}\left(H_{(1)} / H_{(2)}\right) \oplus\left(H_{(1)} / H_{(2)} \otimes H_{(2)} / H_{(3)}\right)
\end{aligned}
$$

and R_{3}^{*} is the subgroup of W_{3}^{*} generated by elements

$$
\begin{aligned}
& \frac{d(j)}{d(i)}\left(\bar{x}_{1 j} \otimes \overline{x_{1 i}^{d(i)}}\right)-\left(\bar{x}_{1 i} \otimes \overline{x_{1 j}^{d(j)}}\right)+\binom{d(j)}{2}\left(\bar{x}_{1 i} \vee \bar{x}_{1 j} \vee \bar{x}_{1 k}\right) \\
& -\frac{d(j)}{d(i)}\binom{d(i)}{2}\left(\bar{x}_{1 i} \vee \bar{x}_{1 i} \vee \bar{x}_{1 j}\right), \quad 1 \leq i \leq j \leq \lambda(1) .
\end{aligned}
$$

Proof. Define ψ on the Z-free generators of Λ_{3} as follows:

$$
\begin{aligned}
& \left(x_{1 i}-1\right)^{d(i)} \psi=\bar{x}_{1 i} \vee \bar{x}_{1 i} \vee \bar{x}_{1 i} \quad \text { if } d(i)=3, \\
& =R_{3}^{*} \quad \text { if } d(i)>3 . \\
& \left(x_{2 i}-1\right)^{d^{\prime}(i)} \psi=R_{3}^{*} \text {. } \\
& d(i)\left(x_{1 i}-1\right)\left(x_{1 j}-1\right) \psi=-\binom{d(i)}{2}\left(\bar{x}_{1 i} \vee \bar{x}_{1 i} \vee \bar{x}_{1 j}\right) \\
& +\bar{x}_{1 j} \otimes \overline{x_{1 i}^{d(i)}}+R_{3}^{*} \quad \text { where } d(i)=o^{*}\left(x_{1 i}\right) \text {. } \\
& \left(x_{1 i}-1\right)\left(x_{1 j}-1\right)\left(x_{1 k}-1\right) \psi=\bar{x}_{1 i} \vee \bar{x}_{1 j} \vee \bar{x}_{1 k}+R_{3}^{*}, \quad 1 \leq i \leq j \leq k \leq \mu(1) . \\
& \left(x_{1}-1\right)\left(x_{2 j}-1\right) \psi=\bar{x}_{1 i} \otimes \bar{x}_{2 j}+R_{3}^{*} \text {. } \\
& \left(x_{3 i}-1\right) \psi=R_{3}^{*} \text {. }
\end{aligned}
$$

$(P(\alpha)) \psi=R_{3}^{*}$ where α is basic and $W(\alpha) \geq 4 . \Lambda_{3}^{*} \subset \Lambda_{3}$ since it is spanned by elements $\left(h_{1}-1\right)\left(h_{2}-1\right)\left(h_{3}-1\right),(x-1)(y-1) ; w\left(h_{i}\right)=1, x \in[H, K]$ and of weight 2 , and $v \in H$. So $\sum_{i-1}^{3} w\left(h_{i}\right)=3$ and $w t \cdot x+w t y=3$. Similarly $\Lambda_{4}^{*} \subset \Lambda_{4}$. Therefore ψ induces a homomorphism $\psi^{*}: \Lambda_{3}^{*} \rightarrow W_{3}^{*} / R_{3}^{*}$. We now show that $\left(\Lambda_{4}\right) \psi^{*}=R_{3}^{*}$ so that ψ^{*} actually induces a homomorphism $\psi^{*}: \Lambda_{3}^{*} / \Lambda_{4}^{*} \rightarrow W_{3}^{*} / R_{3}^{*}$.

Consider the image of ψ^{*} on each of the basis elements of Λ_{4}.

$$
\begin{aligned}
&\left(x_{1 i}-1\right)^{d(i)} \psi^{*}=R_{3}^{*} \quad \text { since } d(i) \geq 4 . \\
&\left(x_{2 i}-1\right)^{d^{\prime}(i)} \psi^{*}=R_{3}^{*}, \quad d^{\prime}(i)=o^{*}\left(x_{2 i}\right) . \\
&\left(x_{3 i}-1\right)^{d^{\prime \prime}(i)} \psi^{*}=R_{3}^{*}, \quad d^{\prime \prime}(i)=o^{*}\left(x_{3 i}\right) . \\
&\left(x_{1 i}-1\right)^{d(i)}\left(x_{1 j}-1\right) \psi^{*}=\left[-d(i)\left(x_{1 i}-1\right)\left(x_{1 j}-1\right)-\binom{d(i)}{2}\left(x_{1 i}-1\right)^{2}\left(x_{1 j}-1\right)\right. \\
&\left.-\sum_{k=3}^{d t i)}\binom{d(i)}{2}\left(x_{1 i}-1\right)^{k}\left(x_{1 ;}-1\right)+\left(x_{1 i}^{d(i)}-1\right)\left(x_{1 j}-1\right)\right] \psi^{*} \\
&= {\left[-d(i)\left(x_{1 i}-1\right)\left(x_{1 j}-1\right)-\binom{d(i)}{2}\left(x_{1 i}-1\right)^{2}\left(x_{1 j}-1\right)\right.} \\
&-\sum_{k-3}^{d(i)-1}\binom{d(i)}{k}\left(x_{1 i}-1\right)^{k}\left(i_{1 j}-1\right)+\left(x_{1 j}-1\right)\left(x_{1 i}^{d(i)}-1\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left(\left[x_{1 i}^{d(i)}, x_{1 j}\right]-1\right)+\sum g(\alpha) P(\alpha)\right] \psi^{*} \\
& =\binom{d(i)}{2}\left(\bar{x}_{1 i} \vee \bar{x}_{1 i} \vee \bar{x}_{1 i}\right)-\left(\bar{x}_{1 j} \otimes \overline{x_{1 i}^{d(i)}}\right) \\
& -\binom{d(i)}{2}\left(\bar{x}_{1 i} \vee \bar{x}_{1 i} \vee \bar{x}_{1 i}\right)+\left(\bar{x}_{1 j} \otimes \overline{x_{1 i}^{d(i)}}\right)+R_{3}^{*}=R_{3}^{*} . \\
& {\left[\left(x_{1 i}-1\right)\left(x_{1 j}-1\right)^{d(j)}\right] \psi^{*}=\left[-d(j)\left(x_{1 i}-1\right)\left(x_{1 j}-1\right)-\binom{d(j)}{2}\left(x_{1 i}-1\right)\left(x_{1 j}-1\right)^{2}\right.} \\
& \left.-\sum_{k=3}^{d(j)-1}\binom{d(j)}{k}\left(x_{1 i}-1\right)\left(x_{1 j}-1\right)^{k}+\left(x_{1 i}-1\right)\left(x_{1 j}^{d(j)}-1\right)\right] \psi^{*} \\
& =\binom{d(i)}{2} \stackrel{c(j)}{d(i)}\left(\bar{x}_{1 i} \vee \bar{x}_{1 i} \vee \bar{x}_{1 i}\right)-\frac{d(j)}{d(i)}\left(\bar{x}_{1 j} \otimes \overline{x_{1 i}^{a(i)}}\right) \\
& -\binom{d(j)}{2}\left(\bar{x}_{1 i} \vee \bar{x}_{1 j} \vee \bar{x}_{1 j}\right)+\left(\bar{x}_{1 i} \otimes \overline{x_{1 j}^{d(j)}}\right)+R_{3}^{*}=R_{3}^{*} . \\
& \left(d(i), d^{\prime}(j)\left(x_{1 i}-1\right)\left(x_{2 j}-1\right) \psi^{*}=\left(d(i), d^{\prime}(j)\right)\left(\bar{x}_{1 i} \otimes, \bar{r}_{2 j}\right)\right. \\
& =\bar{x}_{1 i} \otimes x_{2 j}^{d(j)}=R_{3}^{*} . \\
& {\left[d(i)\left(x_{11}-1\right)\left(x_{1,}-1\right)\left(x_{1 k}-1\right)\right] \psi^{*}=d(i)\left(\bar{x}_{1 i} \vee \bar{x}_{1 j} \vee \bar{x}_{1 k}\right)} \\
& =\text { identity in } \mathrm{Sp}^{3}\left(\boldsymbol{H}_{(1)} / \boldsymbol{H}_{(2)}\right) . \\
& {[P(\alpha)] \psi^{*}=R_{3}^{*}}
\end{aligned}
$$

by definition where α is basic and $W(\alpha) \geq 4$. Hence

$$
\left(A_{4}\right) \psi^{*}=R_{3}^{*} .
$$

ψ^{*} is clearly onto by definition. To determine $\operatorname{Ker} \psi^{*}$, if $x \in \Lambda_{3}$ is expressed as a linear combination of its Z-free generators, we can observe that $x \psi^{*}=0$ implies that $x=0$. But by definition of ψ, the elements of the type, $x_{3 i}-1 ;\left(x_{2 i}-1\right)^{d(1)} ; P(\alpha), \alpha$ basic $U^{*}(\alpha) \geq 4$ are mapped into R_{3}^{*}. Therefore these elements lie in Ker ψ^{*}. These elements are precisely

$$
\left(A_{[H, \mathrm{~K}, \mathrm{~K}]}+A_{[H, \kappa, H \mid}+A_{H,}+A_{[H, K]}^{2}\right) \cap A_{3}^{*} .
$$

Hence

$$
\operatorname{Ker} \psi^{*}=\left(A_{[H, K, K]}+A_{[H, K, H]}+A_{H}+A_{[H, K]}\right) \cap A_{3}^{*}+A_{4}^{*} .
$$

This completes the proof of the lemma.

L.emma 7

$$
\frac{A_{K}^{2} A_{H}+A_{K} A_{H}^{2}}{A_{K}^{3} A_{H}+A_{K}^{2} A_{H}^{2}+A_{K} A_{H}^{3}} \simeq \frac{\left[W_{2}(K) \otimes\left(H_{(1)} / H_{(2)}\right)\right] \oplus\left[\left(K_{1} / K_{2}\right) \otimes \psi_{2}(H)\right]}{R_{3}(H, K)}
$$

where $R_{3}(H, K)$ is the subgroup of $\left[W_{2}(K) \otimes\left(H_{(1)} / H_{(2)}\right)\right] \oplus\left[\left(K_{1} / K_{2}\right) \otimes{ }_{2}(H)\right]$ generated by elements $m_{i j}$ and $n_{i j}$ where $m_{i j}=\overline{y_{i}^{m} \otimes} \otimes \bar{x}_{j}-\bar{y}_{i} \otimes \overline{x_{j}^{m}}, m=\left[d(i), d^{\prime}(i)\right]$ is the least common multiple of $d(i)=o^{*}\left(x_{i}\right)$ and $d^{\prime}(i)=o^{*}\left(y_{i}\right)$;

$$
\begin{aligned}
n_{i j}= & \frac{\left[d(j), d^{\prime}(i)\right]}{d^{\prime}(i)}\left\{\left[\overline{y_{1 i}^{d^{\prime}(i)}}-\binom{d^{\prime}(i)}{2}\left(\bar{y}_{i} \vee \bar{y}_{i}\right)\right] \otimes \bar{x}_{j}\right\} \\
& -\frac{\left[\left(d(j), d^{\prime}(i)\right]\right.}{d(j)}\left\{\bar{y}_{i} \otimes\left[\overline{x_{j}^{d(j)}}-\binom{d(j)}{2}\left(\bar{x}_{j} \vee \bar{x}_{j}\right)\right]\right\} \\
& \text { for } 1 \leq i \leq \lambda ; \quad 1 \leq j \leq \mu .
\end{aligned}
$$

Proof. Denote $M_{1}=A_{K}^{2} A_{H}+A_{K} A_{H}^{2}$ and $M_{2}=A_{K}^{3} A_{H}+A_{K}^{2} A_{H}^{2}+A_{K} A_{H}^{3}$. Define a mapping $\theta_{1}: A_{K}^{2} \times A_{H} \rightarrow M_{1} / M_{2}$ by $\left(u_{2}, v\right) \theta_{1}=u_{2} v+M_{2}$ where $u_{2} \in A_{K}^{2}$ and $v \in A_{H}$. We prove that (1) $\left(A_{K}^{3} \times A_{H}\right) \theta_{1}=M_{2}$ and (2) $\left(A_{K}^{2} \times A_{H}^{2}\right) \theta_{1}=M_{2} . A_{K}^{3}$ is generated additively by $\left(k_{1}-1\right)\left(k_{2}-1\right)\left(k_{3}-1\right) ; k_{1}, k_{2}, k_{3} \in K$.

For $x=\left(k_{1}-1\right)\left(k_{2}-1\right)\left(k_{3}-1\right) \in A_{K}^{3}$, if $h \in H$,

$$
\begin{aligned}
(x, h-1) \theta_{1} & =\left[\left(k_{1} k_{2}-1\right)\left(k_{3}-1\right)-\left(k_{1}-1\right)\left(k_{3}-1\right)-\left(k_{2}-1\right)\left(k_{3}-1\right)\right](h-1) \theta_{1} \\
& =\left(k_{1}-1\right)\left(k_{2}-1\right)\left(k_{3}-1\right)(h-1) \in A_{K}^{3} A_{H} \subset M_{2} .
\end{aligned}
$$

A_{k}^{2} is generated additively by $\left(k_{1}-1\right)\left(k_{2}-1\right) ; k_{1}, k_{2} \in K$. Similarly A_{H}^{2} is generated additively by $\left(h_{1}-1\right)\left(h_{2}-1\right) ; h_{1}, h_{2} \in H$.

Let $x=\left(k_{1}-1\right)\left(k_{2}-1\right) \in A_{K}^{2}$ and $y=\left(h_{1}-1\right)\left(h_{2}-1\right)$ be an element of A_{H}^{2}.

$$
\begin{aligned}
(x, y) \theta_{1} & =x \cdot y+M_{2} \\
& =\left(k_{1}-1\right)\left(k_{2}-1\right)\left[\left(h_{1} h_{2}-1\right)+\left(h_{1}-1\right)+\left(h_{2}-1\right)\right]+M_{2} \\
& =\left(k_{1}-1\right)\left(k_{2}-1\right)\left(h_{1}-1\right)\left(h_{2}-1\right) \in A_{K}^{2} A_{H}^{2} \subset M_{2} .
\end{aligned}
$$

Hence θ, induces a mapping $\hat{\theta_{1}}:\left(A_{K}^{2} / A_{K}^{3}\right) \times\left(A_{H} / A_{H}^{2}\right) \rightarrow M_{1} / M_{2}$ defined by $\left(\bar{u}_{2}, \bar{v}\right) \hat{\theta_{1}}=$ $u_{2} v+M_{2}$ where $\bar{u}_{2}=u_{2}+A_{\kappa}^{3}, u_{2} \in A_{\kappa}^{2}, \bar{v}=v+A_{H}^{2}, v \in A_{H}$.

It is easy to prove that $\hat{\theta}_{1}$ is bilinear.

$$
\begin{aligned}
\left(\bar{u}_{2}+\bar{u}_{2}^{\prime}, \bar{v}\right) \hat{\theta}_{1} & =\left(\overline{\left.u_{2}+u_{2}^{\prime}, \bar{v}\right)} \hat{\theta}_{1}=\left(u_{2}+u_{2}^{\prime}\right) \cdot v+M_{2}=u_{2} v+u_{2}^{\prime} v+M_{2}\right. \\
& =\left(\bar{u}_{2}, \bar{v}\right) \hat{\theta}_{1}+\left(\bar{u}_{2}^{\prime}, \bar{v}\right) \hat{\theta}_{1}
\end{aligned}
$$

Similarly

$$
\left(\bar{u}_{2}, \overline{v_{1}+v_{2}}\right) \bar{\theta}_{1}=u_{2} \cdot\left(v_{1}+v_{2}\right)+M_{2}=u_{2} v_{1}+u_{2} v_{2}+M_{2} .
$$

Therefore $\hat{\theta}_{1}$ induces a homomorphism

$$
\hat{\hat{\theta}_{1}}:\left(A_{k}^{2} / A_{k}^{3}\right) \otimes\left(A_{H} / A_{H}^{2}\right) \rightarrow M_{1} / M_{2}
$$

given by $\left(\bar{u}_{2} \otimes \bar{v}\right) \hat{\hat{\theta}_{1}}=u_{2} v+M_{2}$.
Define $\theta_{2}: A_{K} \times A_{H}^{2} \rightarrow M_{1} / M_{2}$ by $(u, v) \theta_{2}=u v+M_{2} ; u \in A_{K}, v \in A_{H}^{2}$. We can easily prove that (1) $\left(A_{K}^{2} \times A_{H}^{2}\right) \theta_{2}=M_{2}$ and (2) $\left(A_{K} \times A_{H}^{3}\right) \theta_{2}=M_{2}$. Therefore θ_{2} induces a bilinear mapping $\hat{\theta}_{2}:\left(A_{K} / A_{K}^{2}\right) \times\left(A_{H}^{2} / A_{H}^{3}\right) \rightarrow M_{1} / M_{2}$ inducing a homomorphism $\hat{\hat{\theta}}_{2}:\left(A_{K} / A_{K}^{2}\right) \otimes\left(A_{H}^{2} / A_{H}^{3}\right) \rightarrow M_{1} / M_{2}$ given by $\left(\bar{u} \otimes \bar{v}_{2}\right) \hat{\hat{\theta}_{2}}=u v_{2}+M_{2}$. Thus there exists a homomorphism $\hat{\theta}=\hat{\theta}_{1}+\hat{\theta_{2}}$ from $\left[\left(A_{K}^{2} / A_{K}^{3}\right) \otimes\left(A_{H} / A_{H}^{2}\right)\right] \oplus\left[\left(A_{K} / A_{K}^{2}\right) \otimes\left(A_{H^{\prime}}^{2} A_{H}^{3}\right)\right]$ to M_{1} / M_{2} defined by

$$
\left(u_{2} \otimes \bar{v}+\bar{u} \otimes \bar{v}_{2}\right) \hat{\theta}=u_{2} v+u v_{2}+M_{2} .
$$

Since [2], $A_{K}^{2} / A_{K}^{3} \simeq W_{2}(K), A_{H} / A_{H}^{2} \simeq H_{1} / H_{2}, A_{K} / A_{K}^{2} \simeq K_{1} / K_{2}$ and $A_{H}^{2} / A_{H}^{3} \simeq$ $y_{2}(H)$, we have a homomorphism

$$
\left.\tilde{\theta}:\left[W_{2}(K) \otimes\left(H_{(1)}\right)^{\prime} H_{(2)}\right)\right] \oplus\left[\left(K_{1} / K_{2}\right) \otimes w_{2}(H)\right] \rightarrow M_{1} / M_{2}
$$

defined by

$$
\begin{aligned}
& \left(\bar{y}_{2} \otimes \bar{y}_{1}+\left(\bar{y}_{1} \vee \bar{y}_{1}^{\prime}\right) \otimes \bar{x}_{1}^{\prime}+\bar{y}_{1}^{\prime \prime} \otimes \bar{x}_{2}+\overline{y_{1}^{\prime \prime}} \otimes\left(\bar{x}_{1}^{\prime \prime} \vee \bar{x}_{1}^{\prime \prime}\right)\right) \bar{\theta} \\
& =\left(y_{2}-1\right)\left(x_{1}-1\right)+\left(y_{1}-1\right)\left(y_{1}^{\prime}-1\right)\left(x_{1}^{\prime}-1\right)+\left(y_{1}^{\prime \prime}-1\right)\left(x_{2}-1\right) \\
& \quad+\left(y_{1}^{\prime \prime \prime}-1\right)\left(x_{1}^{\prime \prime}-1\right)\left(x_{1}^{\prime \prime \prime}-1\right)+M_{2},
\end{aligned}
$$

where $y_{1}, y_{1}^{\prime}, y_{1}^{\prime \prime}, y_{1}^{\prime \prime \prime} \in K_{1}, y_{2} \in K_{2} ; x_{1}, x_{1}^{\prime}, x_{1}^{\prime \prime}, x_{1}^{\prime \prime} \in H_{(1)} ; x_{2} \in H_{(2)}$.
We prove that $R_{3}(H, K) \tilde{\theta}=M_{2}$. For $m_{i j}, n_{i j} \in R_{3}(H, K)$.

$$
\begin{aligned}
& m_{i j} \bar{\theta}=\left(\bar{y}_{i}^{\prime \prime} \otimes \bar{x}_{j}-\bar{y}_{i} \otimes \bar{x}_{j}^{\prime \prime}\right) \bar{\theta} \\
& =\left(y_{i}^{m}-1\right)\left(x_{j}-1\right)-\left(y_{i}-1\right)\left(x_{j}^{m}-1\right)+M_{2} \\
& =m\left[\left(y_{i}-1\right)(x-1)-\left(y_{i}-1\right)\left(x_{j}-1\right)\right] \text { modulo } M_{2} \\
& =M_{2} \text {. } \\
& \left(n_{i j}\right) \bar{\theta}=\frac{\left[d(j), d^{\prime}(i)\right]}{d^{\prime}(i)}\left[\left(y_{i}^{d^{\prime}(i)}-1\right)\left(x_{j}-1\right)-\binom{d^{\prime}(i)}{2}\left(y_{i}-1\right)\left(y_{i}-1\right)\left(x_{i}-1\right)\right] \\
& -\frac{\left[\left(d(j), d^{\prime}(i)\right]\right.}{d(j)}\left|\left(y_{i}-1\right)\left(x_{j}^{d(i)}-1\right)-\binom{d(j)}{2}(.,-1)(x,-1)(x,-1)\right| \\
& =\frac{\left[d(j), d^{\prime}(i)\right]}{d^{\prime}(i)}\left|d^{\prime}(i)\left(y_{i}-1\right)+\sum_{k}^{d{ }^{\prime \prime}}\binom{d^{\prime}(i)}{k}\left(y_{i}-1\right)^{h}\right|(x,-1) \\
& -\frac{\left[d(j), d^{\prime}(i)\right]}{d(j)}\left(y_{i}-1\right)\left[\left.d(j)\left(x_{j}-1\right)+\sum_{i=1}^{d \prime 1}\binom{d(j)}{1}\left(x_{j}-i\right)^{\prime} \right\rvert\,+M_{2}\right. \\
& =M_{2} .
\end{aligned}
$$

Let

$$
W=\left[W_{2}(K) \otimes\left(H_{(1)} / H_{(2)}\right)\right] \oplus\left[\left(K_{1} / K_{2}\right) \otimes x_{2}(H)\right] .
$$

Then $\tilde{\theta}$ induces a homomorphism $\theta: W / \boldsymbol{R}_{3}(H, K) \rightarrow \boldsymbol{M}_{1} / \boldsymbol{M}_{3}$. We construct a homomorphism $\sigma: M_{1} / M_{2} \rightarrow W^{\prime} R_{3}(H, K)$ such that $\theta \sigma$-identity on $\boldsymbol{W} / \boldsymbol{R}_{3}\left(H, K^{\prime}\right)$ and $\sigma \theta=$ identity on M_{1} / M_{2}.

Let $T=\left\{y_{i,} ; i=1,2, \ldots, m ; j=1,2, \ldots, \lambda\right\}$ be the positive uniqueness basis of κ. For $x \in H$, define $\sigma_{1}: A_{\hat{\Lambda}}^{\prime} A_{H} \rightarrow W / R_{3}(H, K)$ using the Z-free generators of $A_{\hat{A}}^{\prime}$ as follows:

$$
\begin{aligned}
& d^{\prime}(i)\left(y_{1 i}-1\right)(x-1) \sigma_{1}=\left(y_{1 i}^{(i n}-\binom{d^{\prime}(i)}{2}\left(\bar{n}_{11} \vee \bar{v}_{11}\right)\right)\left(\bar{i}+R_{3}(H, K) .\right. \\
& 1 \leq i \leq \lambda, \quad d^{\prime}(i)=o^{*}\left(y_{1 i}\right) . \\
& \left(y_{1,}-1\right)\left(y_{1 i}-1\right)(x-1) \sigma_{1}=\left(\bar{v}_{1 i} \vee \bar{v}_{1 j}\right) \otimes \bar{x}+R_{i}(H, K), \quad 1 \leq i \leq j \leq \lambda . \\
& \left(y_{2}-1\right)(x-1) \sigma_{1}=\bar{F}_{2} \otimes \bar{x}+R_{3}\left(H, K_{1}\right) . \\
& P(\alpha)(x-1) \sigma_{1}=R_{3}(H, K), \quad W(\alpha) \geq 3 .
\end{aligned}
$$

Then $\left(A_{K}^{2} A_{H}^{2}\right) \sigma_{1}=R_{3}(H, K)$ using the Z-free generators $\left\{\left(h_{1}-1\right)\left(h_{2}-1\right) \mid h_{1}, h_{2} \in H\right\}$ of A_{H}^{2}. To prove that $\left(A_{K}^{3} A_{H}\right) \sigma_{1}=R_{3}(H, K)$ consider the free Z-generators of A_{K}^{3} consisting of

$$
\begin{aligned}
& \left(y_{1 i}-1\right)^{d^{(i)}}, \quad d^{\prime}(i)=o^{*}\left(y_{1 i}\right) \geq 3 ; \\
& \left(y_{2 i}-1\right)^{d^{*}(i)}, \quad d^{\prime \prime}(i)=o^{*}\left(y_{2 i}\right) ; \\
& d^{\prime}(i)\left(y_{1 i}-1\right)\left(y_{1 j}-1\right), \quad 1 \leq i \leq j \leq \lambda ; \\
& \left(y_{11}-1\right)\left(y_{1 j}-1\right)\left(y_{1 k}-1\right), \quad 1 \leq i \leq j \leq k \leq \lambda ;
\end{aligned}
$$

and $P(\alpha)$ with α basic and $W(\alpha) \geq 3$. We consider the image of σ_{1} on each of the basis elements.

$$
\begin{aligned}
& {\left[\left(y_{11}-1\right)^{d(1)}(h-1)\right] \sigma_{1}=\left[\left(y_{1 i}^{d i(1)}-1\right)-d^{\prime}(i)\left(y_{1 i}-1\right)-\binom{d^{\prime}(i)}{2}\left(y_{1 i}-1\right)^{2}\right.} \\
& \left.-\sum_{k=3}^{d W}\binom{d^{\prime}(i)}{k}\left(y_{1 i}-1\right)^{k}\right](h-1) \sigma_{1} \\
& =y_{1 i}^{d i(i)} \otimes \bar{h}-y_{1 i}^{d i(i)} \otimes h+\binom{d^{\prime}(i)}{2}\left(\bar{y}_{1 i} v \bar{y}_{1 i}\right) \otimes h \\
& -\binom{d^{\prime}(i)}{2}\left(\bar{y}_{1 i} \vee \bar{y}_{11}\right) \otimes \bar{h}=R_{3}(H, K) . \\
& {\left[\left(y_{21}-1\right)^{d^{\prime \prime}(1)}(\boldsymbol{n}-1)\right] \sigma_{1}=\left\lvert\,-d^{\prime \prime}(i)\left(y_{2 i}-1\right)-\binom{d^{\prime \prime}(i)}{2}\left(y_{2 i}-1\right)^{2}\right.} \\
& -\sum_{k=1}^{\prime w}\binom{d^{\prime \prime}(i)}{k}\left(y_{2 i}-1\right)^{k}+\left(y_{2 i}^{d(i)}-1\right) \dot{(h-1) \sigma_{1}}
\end{aligned}
$$

The last two terms

$$
\sum_{1} w_{1}^{1}\binom{d^{\prime \prime}(i)}{2}\left(y_{21}-1\right)^{k}(h-1) \text { and }\left(y_{21}^{d^{\prime \prime}(i)}-1\right)(h-1)
$$

on the right hand side lie in $P(\alpha), \alpha$ basic with $W(\alpha) \geq 3$, so their image lies in $R_{1}\left(H, K^{\prime}\right)$. Also

$$
-\binom{d^{\prime \prime}(i)}{2}\left(y_{2}-1\right)^{2}(h-1) \sigma_{1} \in R_{3}(H, K)
$$

since the weight of $\left(y_{2}-1\right)^{2}=4$. So

$$
\begin{aligned}
{\left[\left(y_{2 i}-1\right)^{d^{\prime}(1)}(h-1)\right] \sigma_{1} } & =\left[-d^{\prime \prime}(i)\left(y_{2 i}-1\right)(h-1)\right] \sigma_{1} \\
& =-d^{\prime \prime}(i)\left(\bar{y}_{21}(\bar{x}) \in R_{3}(H, K) .\right. \\
{\left[d^{\prime}(i)\left(y_{11}-1\right)\left(y_{11}-1\right)(h-1)\right] \sigma_{1} } & =d^{\prime}(i)\left(\bar{y}_{11} \vee \bar{y}_{1}\right) \otimes \bar{h}+R_{3}(H, K) \\
& =R_{3}(H, K),
\end{aligned}
$$

$\left(y_{1 i}-1\right)\left(y_{1 j}-1\right)\left(y_{1 k}-1\right)(h-1) \in P(\alpha)$ with α basic and $W(\alpha) \geq 3$ so its image under σ_{1} lies in $\left.R_{3}(I), K\right)$.

Similarly we define a homomorphism $\sigma_{2}: A_{K} A_{H}^{2} \rightarrow W / R_{3}(H, K)$ as follows. For any $k \in K$,

$$
\begin{aligned}
& d(i)(k-1)\left(x_{1 i}-1\right) \sigma_{2}=\bar{k} \otimes\left(\overline{x_{1 i}^{d(i)}}-\binom{d(i)}{2}\left(\bar{x}_{1 i} \vee \bar{x}_{1 i}\right)\right)+R_{3}(H, K), \\
& (\dot{i}-1)\left(x_{1}-1\right)\left(x_{1 j}-1\right) \sigma_{2}=\bar{k} \otimes\left(\bar{x}_{1 i} \vee \bar{x}_{1 j}\right)+R_{3}(H, K), \quad 1 \leq i \leq j \leq \mu, \\
& (k-1) P(\beta) \sigma_{2}=R_{3}(H, K), \quad W(\beta) \geq 3 .
\end{aligned}
$$

It is easy to prove that $\left(A_{K} A_{H}^{3}\right) \sigma_{2}=R_{3}(H, K)$. By [5].

$$
A_{K}^{2} A_{H} \cap A_{K} A_{H}^{2}=\left\langle\left[d^{\prime}(i), d(j)\right]\left(y_{i}-1\right)\left(x_{j}-1\right) \mid 1 \leq i \leq \lambda, 1 \leq j \leq \mu\right\rangle
$$

modulo M_{2}. We prove that σ_{1} and σ_{2} map any element of $A_{K}^{\top} A_{H} \cap A_{K} A_{H}^{\prime}$ to the same image. For,

$$
\begin{aligned}
& {\left[d^{\prime}(i), d(j)\right]\left(y_{i}-1\right)\left(x_{j}-1\right) \sigma_{1}} \\
& \left.\quad=\frac{\left[d^{\prime}(i), d(j)\right]}{d^{\prime}(i)} \left\lvert\,\left(y_{i}^{d^{\prime}(i)}-\binom{d^{\prime}(i)}{2}\left(\bar{y}_{i} \vee \bar{y}_{i}\right)\right) \otimes \bar{x}_{j}\right.\right]+R_{3}(H, K) \\
& \quad=\frac{\left[d^{\prime}(i), d(j)\right]}{d(j)}\left\{\bar{y}_{i} \otimes\left|x_{i}^{d(j)}-\binom{d(j)}{2}\left(\bar{x}_{j} \vee \bar{x}_{j}\right)\right|\right\} \\
& \quad=\left[d^{\prime}(i), d(j)\right]\left(y_{i}-1\right)\left(x_{j}-1\right) \sigma_{2} .
\end{aligned}
$$

Therefore we have a homomorphism

$$
\sigma=\sigma_{1}+\sigma_{2}: \frac{\left(A_{\Lambda}^{2} A_{H}+A_{K} A_{H}^{2}\right)}{\left(A_{\Lambda}^{3} A_{H I}+A_{K}^{2} A_{H}^{2}+A_{\Lambda} A_{H}^{3}\right)} \rightarrow W / R_{3}(H, K)
$$

induced by σ_{1} and σ_{2}. It is easy to verify that $\bar{\theta} \sigma$ is the identity map on $W / R_{3}(H, K)$ and $\sigma \tilde{\theta}$ is the identity map on M_{1} / M_{2}.

Therefore $M_{1} / M_{2}=W / R_{3}\left(H, K^{\prime}\right)$.
Note ([1]). Lemma 3.6 immediately gives us

$$
\mathrm{Sp}^{2}\left(H /\left[H, K^{\prime}\right]\right)=\mathrm{Sp}^{2}(H /[H, G]) / \operatorname{lm}([H, K] \vee H) .
$$

Theorem 8. Let G be a finite group such that $G=H \backslash K$, a split extension of a normal subgroup H by a subgroup K, then

$$
\begin{aligned}
& \frac{A_{\Lambda}^{2} \cdot A_{H}+A_{\kappa} A_{H}^{2}}{A_{K}^{3} A_{H}+A_{\Lambda}^{2} A_{H}^{2}+A_{K} A_{H}^{3}+A_{K} A_{[H, K 1} A_{H}}=\left[K_{2} / K_{3} \otimes H_{1} / H_{2}\right] \\
& \oplus\left[\mathrm{Sp}^{2}\left(K_{1} / K_{2}\right) \otimes\left(H_{1} / H_{2}\right)\right] \oplus\left[\left(K_{1} / K_{2}\right) \otimes\left([H, K] / H_{(3)}\right)\right] \\
& \left.\oplus\left[\left(K_{1} / K_{2}\right) \otimes\left(\mathrm{Sp}^{2}[H, K] / H, G\right]\right)\right] .
\end{aligned}
$$

Proof. Consider the following diagram.

The columns are exact.
$\bar{\sigma}$ is induced by σ if $\left(A_{\Lambda} A_{|H, K|} A_{H}\right) \sigma$ lies in the image of

$$
\left[\left(K_{1} / K_{2}\right) \otimes\left(H_{2} / H_{(3)}\right)\right] \oplus\left(\left(K_{1} / K_{2}\right) \otimes([H, K] \vee H)\right)
$$

Let $a \in[H, K]$. Let $x_{1}, x_{2}, \ldots, x_{r}, x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{s}^{\prime}$ be a positive uniqueness basis of H where $x_{i}^{\prime} s$ are of weight one and $x_{j} s$ are of weight 2.

Let $a=a_{0} a_{1}$ where a_{0} is a product of $x_{i} s$ and a_{1} is a product of $x_{j} s$. Then $y=(k-1)\left(a_{0} a_{1}-1\right)(h-1)$ is an element of $A_{K} A_{[H, K]} A_{H}$ with $h \in H, k \in K$.

$$
\begin{aligned}
y & =(k-1)\left[\left(a_{0}-1\right)(a-1)+\left(a_{0}-1\right)+(a-1)\right](h-1) \\
& \equiv(k-1)\left(a_{0}-1\right)(h-1) \quad \text { modulo } A_{K} A_{h}^{3} .
\end{aligned}
$$

Let $a_{0}=\prod_{i-1}^{r} x_{i}^{p_{i}} ; p_{i} s$ are integers. W.l.o.g. we can assume that $h=x_{t}$ for some $t, 1 \leq t \leq r$.

$$
\begin{aligned}
y= & \sum_{i}^{r} p_{i}(k-1)\left(x_{i}-1\right)\left(x_{t}-1\right) \\
= & \sum_{i=1}^{1} p_{i}(k-1)\left(x_{i}-1\right)\left(x_{t}-1\right)+\sum_{i=1+1}^{r} p_{i}(k-1)\left(x_{i}-1\right)\left(x_{t}-1\right) \\
= & \sum_{i-1}^{1} p_{i}(k-1)\left(x_{i}-1\right)\left(x_{t}-1\right)+\sum_{i-1}^{r} p_{i}(k-1)\left(x_{t}-1\right)\left(x_{i}-1\right) \\
& +\sum_{i=t+1}^{r} p_{i}(k-1)\left(\left[x_{i}, x_{t}\right]-1\right)
\end{aligned}
$$

Herce

$$
\begin{aligned}
y \sigma_{2} & =\sum_{i=1}^{\prime} p_{i} \bar{k} \otimes \bar{x}_{i} \vee \bar{x}_{t}+\sum p_{i} \bar{k} \otimes\left(\bar{x}_{t} \vee \bar{x}_{i}\right)+\sum p_{i} \bar{k} \otimes \overline{\left[x_{i}, x_{t}\right]}+R_{3}(H, K) . \\
& =\bar{k} \otimes \bar{a}_{0} \vee \bar{h}_{t}+\bar{k} \otimes \overline{\left[a_{0}, h\right]} \\
& =\bar{k} \otimes \bar{a} \vee \bar{h}_{t}+\bar{k} \otimes \overline{\left[a_{0}, h\right]} \\
& \in\left(\left(K_{1} / K_{2}\right) \otimes([H, K] \vee H)\right) \oplus\left(\left(K_{1} / K_{2}\right) \otimes\left(H_{2} / H_{(3)}\right)\right) .
\end{aligned}
$$

By Lemma 7, σ is an isomorphism θ being the inverse. σ induces a homomorphism σ^{\prime} on

$$
\frac{A_{\kappa} A_{[H, K]} A_{H}+A_{\kappa}^{3} A_{H}+A_{\Lambda}^{2} A_{H}^{2}+A_{\kappa} A_{H}^{3}}{A_{\kappa}^{3} A_{H}+A_{\kappa}^{2} A_{H}^{2}+A_{\kappa} A_{H}^{3}}=X \quad \text { say. }
$$

Define $\psi:\left(\left(K_{1} / K_{2}\right) \otimes([H, K] \vee H)\right) \oplus\left(\left(K_{1} / K_{2}\right) \oplus\left(H_{2} / H_{(3)}\right)\right) \rightarrow X$ such as follows. $\psi=\psi_{1}+\psi_{2}$ where ψ_{1} is defined on the ordered triples $(k, a, h) ; k \in K_{1} K_{2}, a \in[H, K]$, $h \in H$.

$$
\begin{aligned}
(k, a, h) \psi_{1} & =(k-1)(a-1)(h-1)+A_{K}^{3} A_{H}+A_{K}^{2} \cdot A_{H}^{2}+A_{K} \cdot A_{H}^{3} \\
& =(k-1)\left(a_{0}-1\right)(h-1)+A_{K}^{3} \cdot A_{H}+A_{K}^{2} A_{H}^{2}+A_{K} \cdot A_{H}^{3} .
\end{aligned}
$$

ψ_{1} is clearly trilinear and therefore induces a homomorphisti: $\psi_{1}:\left(\boldsymbol{K}_{1} / \boldsymbol{K}_{2}\right) \otimes$ $([H, K] \vee H) \rightarrow X . \psi_{2}$ is defined by $(k, h) \rightarrow(k-1)(h-1)+X ; k \in K, h \in H_{2}, \psi^{\prime}$? is also bilinear and hence induces a homomorphism $\psi_{2}:\left(K_{1} / K_{2}\right) \otimes\left(H_{2} / H_{(3)}\right) \rightarrow X$.

It is : ssy to verify that $\sigma^{\prime} \psi$ is the identity map on X while $\psi \sigma^{\prime}$ is the identify homomorphism on

$$
\left(\left[K_{1} / K_{2}\right) \otimes\left(H_{2} / H_{(3)}\right)\right] \oplus\left[\left(K_{1} / K_{2}\right) \otimes([H, K] \vee H)\right]
$$

Since σ, σ^{\prime} are isomorphisms, $\bar{\sigma}$ is an isomorphism. Hence the theorem.
Corollary 9. If $G=H \times K$ is finite with H and K forming direct factors, than

$$
\begin{aligned}
A_{[i}^{2} A_{H} / A_{i}^{3} A_{H}= & {\left[\left(H_{3} / H_{4}\right) \oplus\left(H_{1} / H_{2} \otimes H_{2} / H_{3}\right) \oplus \mathrm{Sp}^{3}\left(H_{1} / H_{2}\right)\right] / R } \\
& \left.\oplus\left\{\left[W_{2}(K) \otimes\left(H_{1} / H_{2}\right)\right] \oplus\left[\left(K_{1} / K_{2}\right) \otimes\right) \vdots_{2}(H)\right]\right\} / R_{3}(H, K)
\end{aligned}
$$

where R is the submodule of $\left(H_{3} / H_{4}\right) \oplus\left(H_{1} / H_{2} \otimes H_{2} / H_{3}\right) \oplus \mathrm{Sp}^{3}\left(H_{1} / H_{2}\right)$ generated by elements

$$
\begin{aligned}
& \left.\frac{d(j)}{d(i)}\left[x_{1 i}^{d(i)}, x_{1 j}\right]+\left\{\frac{d(j)}{d(i)}\left(\bar{x}_{1 j} \otimes x_{1 i}^{d(i)}\right)-\left(\bar{x}_{1 i} \otimes\right) x_{1 j}^{d(\prime)}\right)\right\} \\
& \quad+\left\{\binom{d(j)}{2}\left(\bar{x}_{1 i} \vee \bar{x}_{1 i} \vee \bar{x}_{1 i}\right)-\frac{d(j)}{d(i)}\binom{d(i)}{2}\left(\bar{x}_{1 i} \vee \bar{x}_{1 i} \vee \bar{x}_{1 i}\right)\right\}
\end{aligned}
$$

with $1 \leq i \leq j \leq \lambda(1)$ and $R_{3}(H, K)$ is the subgroup of $\left[W_{2}(K) \otimes\left(H_{1} / H_{2}\right)\right] \oplus$ $\left[\left(K_{1}, K_{2}\right) \otimes{ }^{\prime \prime}(H)\right]$ generated by elements $\left(\bar{y}_{i}^{\prime \prime} \otimes \bar{x}_{j}-\bar{y}_{i} \otimes \bar{x}_{j}^{\prime \prime}\right)$ where $m=\left[d(i), d^{\prime}(i)\right]$ is the least common multiple of $d(i)=o^{*}\left(x_{i}\right)$ and $d^{\prime}(i)=o^{*}\left(y_{i}\right)$; and

$$
\begin{aligned}
& \frac{\left[d(j), d^{\prime}(i)\right]}{d^{\prime}(i)}\left\{\left[\overline{y_{1 i}^{d(i)}}-\binom{d^{\prime}(i)}{2}\left(\bar{y}_{i} \vee \bar{y}_{i}\right) \otimes \bar{x}_{j}\right\}\right. \\
& \quad=\frac{\left[d(j), d^{\prime}(i)\right]}{d(j)}\left\{\bar{y}_{i} \otimes\left[\overline{x_{j}^{d(j)}}-\binom{d(j)}{2}\left(\bar{x}_{j} \vee \bar{x}_{j}\right)\right]\right\} .
\end{aligned}
$$

Proof. From Lemma 5, since H and K commute,

$$
A_{\bar{G}}^{2} A_{H}=A_{H}^{3}+A_{K} A_{H}^{2}+A_{K}^{2} \cdot A_{H}
$$

and

$$
A_{G}^{3} A_{H}=A_{H}^{4}+A_{K} A_{H}^{3}+A_{K}^{3} A_{H}+A_{K}^{2} A_{H}^{2} .
$$

Hence

$$
A_{G}^{2} A_{H} / A_{G}^{3} A_{H}=\left(A_{H}^{3} / A_{H}^{4}\right) \oplus\left(\frac{A_{K}^{2} A_{H}+A_{K} \cdot A_{H}^{2}}{A_{K} A_{H}^{3}+A_{K}^{2} A_{H}^{2}+A_{K}^{3} A_{H}}\right) .
$$

The result follo:vs by Lemma 7 and [4, Theorem 7].

Acknowledgement

The author would like to express his sincere gratitude to Professor Ken-Ichi Tahara of Aichi University of Education, Japan for his many valuable and illuminating suggestions.

References

[1] M. Khambadkone. On the structure of augmentation ideals in grouprings, to appear.
[2] G. Losey. On the structure of $Q_{2}(G)$ for finitely generated groups, Canad. J. Math. 25 (197.3) 353-359.
[3] G. Losey, N-series and fitrations of the augmentation ideal, Canad. J. Math. 26 (1974) 962-977.
$[4]$ K. Tahara, On the structure of $Q_{3}(G)$ and the forth dimension subgroups, Japan J. Math. 3 (2) (1977) 381-394.
[5] K. Tahara, Augmentation quotient, and dimension subgroups of semidirect products, Math. Proc. Camb. Phil. Soc. 91 (1982) 39-49.

